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The theory of thermoacoustic mixture separation is extended to include the effect of a nonzero axial
temperature gradient. The analysis yields a new term in the second-order mole flux that is
proportional to the temperature gradient and to the square of the volumetric velocity and is
independent of the phasing of the wave. Because of this new term, thermoacoustic separation stops
at a critical temperature gradient and changes direction above that gradient. For a traveling wave,
this gradient is somewhat higher than that predicted by a simple four-step model. An experiment
tests the theory for temperature gradients from 0 to 416 K/m in 50–50 He–Ar mixtures.
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I. INTRODUCTION

When sound propagates through a gas mixture confined
within a duct, the mixture partially separates, creating gradi-
ents in the concentrations of its components along the length
of the duct.1–4 This thermoacoustic separation is due to the
oscillating, combined effects of viscosity and thermal diffu-
sion, with appropriate phasing, in the acoustic boundary
layer. The thermoacoustic separation mechanism is similar to
that employed in a conventional thermal-diffusion column,5

except for three major differences. First, the radial tempera-
ture gradient and thermal diffusion are oscillating in the case
of thermoacoustic separation but are steady in the case of
conventional thermal diffusion. Second, the temperature ex-
cursions �T in thermoacoustic separation, which are due to
the adiabatic compressions and rarefactions in the acoustic
wave, are small compared to the absolute mean temperature
of the gas; in thermal-diffusion columns, though, the tem-
perature difference �T between the walls of the column is
generally comparable to the absolute mean temperature.
Third, the bulk gas motion that yields large mole-fraction
differences �n�kT�T �where kT is the thermal-diffusion ra-
tio� occurs due to acoustically driven, oscillating motion of
the gas in thermoacoustic separation, instead of being driven
steadily by natural convection as in a thermal-diffusion col-
umn, allowing thermoacoustic separation to work with any
orientation of the duct, in a coiled or folded duct, or even in
the absence of gravity.

Since thermoacoustic separation depends on thermal dif-
fusion, it is important to investigate the effect of an axial
temperature gradient. For example, if a separation duct is to
be operated at elevated temperatures, one would need to
know whether the entire duct must be subjected to high tem-
peratures or whether it is possible to have the feedstock inlet,
product outlets, or acoustic drivers reside outside the hot
region.
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In Secs. II–IV, we revisit the previous derivations1,2,4 of
thermoacoustic separation including now a finite temperature
gradient lengthwise along the duct. We show in Sec. II by a
simple model that there is a limiting temperature gradient at
which the separation process ceases. In Secs. III and IV, we
derive the mathematical details of the temperature gradient’s
effect on the separation. Then, in Sec. V, we describe an
experimental apparatus designed for testing the theory, and
we conclude in Sec. VI by showing data for separation in
50–50 He–Ar mixtures compared with the theory. The effect
of the nonzero axial temperature gradient is small, but not
negligible, for the conditions in these experiments.

II. THE BUCKET-BRIGADE MODEL

As has been shown previously,1–4 the time-averaged
thermoacoustic mixture-separation flux occurs due to pro-
cesses in the acoustic boundary layer. To gain some intuitive
understanding of the process in the presence of an axially
imposed temperature gradient, we present an updated carica-
ture of the process in Fig. 1. This figure is similar to Fig. 1 of
Ref. 2, except that now the boundary carries a time-averaged
axial temperature gradient dTm /dx, whereas it was spatially
isothermal in Ref. 2. The duct wall still has sufficiently large
specific heat and thermal conductivity with respect to the gas
that its temperature is considered to be fixed in time for any
location x along the duct.

When thermoacoustic separation occurs, the time-
averaged separation flux is carried by the gas parcels located
approximately one thermal penetration depth �� from the
boundary, because those parcels experience both thermal dif-
fusion and motion, with appropriate phasing. For such a par-
cel, the oscillating temperature amplitude is approximately
�T1�= �p1� /�mcp= ��−1�Tm�p1� /�pm due to the approximately
adiabatic compressions and rarefactions of the gas. In this
expression, �p1� is the pressure amplitude of the sound wave,
�m and pm are the mean density and pressure of the gas, cp is
the isobaric specific heat, and � is the ratio of the isobaric

and isochoric specific heats. The resulting lateral thermal
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gradient is determined by this temperature amplitude, by the
parcel’s distance from the wall, and by the axial displace-
ment amplitude �x1� of the parcel:

�T

�y
�

�T1� − �x1�
dTm

dx

��

. �1�

Thermal diffusion will not take place between the moving
parcel and a parcel at the same x-location at the boundary
when there is no temperature difference between these par-
cels, i.e., when Eq. �1� is zero. Therefore, thermoacoustic
separation ceases when the axial thermal gradient is approxi-
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FIG. 1. Discrete time-step model of thermoacoustic separation in a binary
mixture, assuming standing-wave phasing and including the effect of a tem-
perature gradient along the duct. The three parcels of gas closest to the wall
are locked in place by viscosity, but they each have different mean tempera-
tures due to the thermal gradient along the duct. On the right-hand side of
the figure, far from the wall of the duct, one parcel of gas is shown at the
extrema of its motion. This parcel experiences no lateral temperature gradi-
ent during the motion, because it is outside the thermal boundary layer, as
depicted in the bottom portion of the figure. In the middle of the figure,
another parcel of gas is shown at the extrema of its motion near the edge of
the thermoviscous boundary layer. At the extremes of its motion, there is a
temperature gradient between this parcel and the parcels adjacent to the
wall, driving thermal diffusion between this parcel and those at the wall. If
dTm /dx
0 for the phasing between motion and pressure considered here,
then the lateral thermal gradient, and therefore also the thermal diffusion
between the parcels, is lower than it would be for an isothermal boundary.
mately
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�dTm
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�
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�T1�
�x1�

=
� − 1

�
Tm

�p1�
pm

�

��u1	�
, �2�

where � is the angular frequency and ��u1	�=��x1� is the
amplitude of the spatially averaged velocity. This is exactly
the condition defining the critical temperature gradient that
differentiates thermoacoustic engines and refrigerators.6 In
the simple model of Fig. 1, we are following the oscillating
flow of molecules instead of heat. However, since both of
these flows are driven by a lateral temperature gradient, the
axial gradient dTm /dx at which both processes stop must be
the same. For higher gradients, thermoacoustic separation
will work in the opposite direction, e.g., typically causing a
time-averaged flux of the lighter component opposite to the
direction of acoustic power flow, analogous to the change in
direction of time-averaged enthalpy flow as a thermoacoustic
refrigerator is taken past its critical temperature gradient to
become an engine.

Similar to our previous calculation of the saturation gra-
dient in Ref. 2, we define �dTm /dx�crit exactly as in Eq. �2�,
and we define

�T =
dTm/dx

�dTm/dx�crit
�3�

as a dimensionless measure of the temperature gradients in
what follows. Although in general this real number could
have any magnitude, in our experiments −1	�T	1.

III. DEVELOPMENT OF THE FIRST-ORDER
EQUATIONS

To calculate the effect of an axial temperature gradient,
we follow the notation and approach of Swift and Spoor1 by
expanding the thermoacoustic variables to first order in the
time dependence

p = pm + R�p1�x�eı�t� , �4�

u = R�u1�x,r�eı�t� , �5�

T = Tm�x� + R�T1�x,r�eı�t� , �6�

�,c,s: similar to T , �7�

where x is the axial coordinate along the duct, s is the en-
tropy per unit mass, c is the mass fraction of the heavier
component, R�� denotes the real part, and ı=
−1. The mean
temperature Tm was independent of x in Ref. 1.

The diffusive mass-flux density vector is given by Lan-
dau and Lifshitz7 as

i = − �D12��c +
kT�

T
� T� , �8�

where D12 is the mutual diffusion coefficient and kT� is the
mass-scaled thermal-diffusion ratio. The convection and dif-

fusion of the mass fraction c is then
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�
 �c

�t
+ u · �c� = − � · i = � · ��D12
�c +

kT�

T
� T�� .

�9�

Inserting the expansions of Eqs. �4�–�7� and keeping only the
first-order oscillating quantities, one might consider new
terms containing spatial derivatives of Tm or �m that are non-
zero due to the gradients in temperature and concentration,
such as −�1D12kT��1 /Tm ·dTm /dx�2. Those new terms can be
neglected because they are of order ��� /��2 smaller than
other terms, where � is the wavelength, leaving

c1 +
u1

ı�

dcm

dx
=

�D
2

2ı
��r

2c1 +
kT�

Tm
�r

2T1� , �10�

where �D=
2D12 /� is the mass diffusion length, which is
unchanged from Eq. �18� of Ref. 2. Although the temperature
gradient is nonzero, it does not affect the convection and
diffusion in the mixture through this first-order equation.
�Nevertheless, the gradient dTm /dx does influence mass flow
at zeroth order through the steady thermal diffusion in the x
direction; this will be seen in the expression for the total
separation flux in Sec. IV.�

The oscillating heat transfer in the mixture is given by
Eq. �20� of Ref. 1:

�mTm
ı�s1 + u1
dsm

dx
� = k�r

2T1 − �kT�
 �g

�c
�

p,T

− Tm
 �g

�T
�

p,c
� � · i1, �11�

where k is the thermal conductivity and g is the Gibbs free
energy per unit mass of the mixture, and the divergence of
the first-order oscillating mass flux is

� · i1 = − ı��mc1 − �mu1
dcm

dx
�12�

from the left-hand side of Eq. �9�. The entropy terms are
replaced using the differential identity

ds =
cp

T
dT − 
 �g

�T
�

p,c
dc −

1

�T
dp �13�

from Eq. �22� of Ref. 1. In the case of dsm /dx, though, we
now must keep both the dTm /dx and dcm /dx contributions,
while the dpm /dx part remains zero since there is no mean
pressure gradient along the duct. Using Eq. �13� to replace
dsm /dx and s1 in Eq. �11�, and using

� �
�kT��2

Tmcp

 �g

�c
�

p,T
=

� − 1

�

kT
2

nH�1 − nH�
�14�

as originally defined by Ref. 1 and in which nH is the mole
fraction of the heavier component and kT is the thermal-

diffusion ratio, we find
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T1 =
p1

�mcp
+

�Tm

kT�
c1 +

��
2

2ı
�r

2T1 +
�Tm

kT�

dcm

dx

u1

ı�
−

dTm

dx

u1

ı�

�15�

after some cancellations. There is only one new term, featur-
ing dTm /dx, and it is in phase with the concentration-
gradient term previously derived.2

Solving Eq. �15� for c1, we substitute the result in Eq.
�10� to find

T1 =
p1

�mcp
+

1

2ı
���

2 + �D
2 �1 + ����r

2T1 +
��

2�D
2

4
�r

4T1

−
dTm

dx

u1

ı�
−

�D
2

2ı

�Tm

kT�

dcm

dx
−

dTm

dx
� 1

ı�
�r

2u1. �16�

Making use of the general expression for the velocity in the
duct,

u1 =
�u1	

1 − f


�1 − h
� , �17�

where h
 is a function describing the shape of the velocity
profile across the duct and f
= �h
	 is the average of this
function over the cross section, we can rewrite Eq. �16� as

T1 =
p1

�mcp
−

�u1	
ı�

1

1 − f


dTm

dx
+

1

2ı
���

2 + �D
2 �1 + ����r

2T1

+
��

2�D
2

4
�r

4T1 +
�u1	
ı�

1

1 − f


dTm

dx
h


+
�D

2

2ı

�Tm

kT�

dcm

dx
−

dTm

dx
� �u1	

ı�

1

1 − f


�r
2h
, �18�

a result which is not limited to a particular duct geometry if
�r

2 is taken to be the two-dimensional Laplacian operator in
the plane perpendicular to x. This equation is the same as
that derived in Ref. 2, except that two new terms appear in
the inhomogeneous part that are proportional to dTm /dx. One
of these terms is proportional to the velocity u1, and the other
is proportional to �2u1.

This fourth-order differential equation is to be solved for
the same boundary conditions as in the previous work. Al-
though the boundary is no longer spatially isothermal, we
still assume that its specific heat and thermal conductivity are
much larger than that of the gas, so that the boundary at any
position x is temporally isothermal. In this case, the ampli-
tude T1=0 at the solid wall, just as it was in the case of the
isothermal boundary. The other boundary conditions are that
T1 remains finite everywhere in the duct, and that the diffu-
sive flux into the solid wall is zero:

ir�wall � ��rc1 +
kT�

Tm
�rT1�

wall
= 0. �19�

Using Eqs. �15� and �17�, this zero-flux boundary condition

becomes
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��1 + ���rT1 −
��

2

2ı
�r

3T1 + 
�Tm

kT�

dcm

dx

−
dTm

dx
� �u1	

ı�

1

1 − f


�rh
�
wall

= 0. �20�

In order to calculate the derivatives needed for solving
the differential equation, we now have to specify the geom-
etry of the duct. For direct comparison with Ref. 2, it is
useful to consider the boundary-layer limit, for which

h
 = e−�1+ı�y/�
 and f
 =
�1 − ı��


2rh
, �21�

where rh is the hydraulic radius,8 �
=
2� /��m is the vis-
cous penetration depth, and � is the dynamic viscosity. Be-
cause it is of more practical interest, though, we also solve
the problem for the case of a circular tube of arbitrary radius
R. In that case,

h
 =
J0��ı − 1�r/�
�
J0��ı − 1�R/�
�

and

f
 =
2J1��ı − 1�R/�
�

J0��ı − 1�R/�
��ı − 1�R/�


, �22�

where the Ji are the usual cylindrical Bessel functions. Cal-
culations based on the Bessel-function solution will be com-
pared with experimental data in Sec. VI.

One may show by substitution that the solution of Eq.
�18� is of the form

T1 =
p1

�mcp
�1 −

�mcp

p1

�u1	
ı�

1

1 − f


dTm

dx
− Bh
 − Ch�D

− 
1 −
�mcp

p1

�u1	
ı�

1

1 − f


dTm

dx
− B − C�hD�� , �23�

where the coefficient of the last term was determined by the
boundary condition T1 �wall=0, and the hi are defined as in Eq.
�21� or Eq. �22� but with different length scales �i defined
below. In the previous solution2 without a temperature gra-
dient, the r- or y-independent part of T1 was simply the os-
cillating temperature due to the adiabatic pressure oscilla-
tions of the gas in the sound wave. Here, we have an
additional term due to the motion of gas along the tempera-
ture gradient. Since �u1	 / ı���x1	, the amplitude of the mo-
tion, this term modifies the temperature excursion T1 to in-
clude the fact that the gas instantaneously in the particular
control volume at location x �in the Eulerian sense� came
from a mean position of higher or lower mean temperature.
Depending on the relative phasing of p1 and u1, this extra
term may either raise or lower the amplitude of oscillating
temperature at a given point along the duct.

Since the homogenous part of Eq. �18� is unchanged
from Ref. 1, the current solution contains the same length
scales

��D
2 = 1��

2�1 + �1 + ��/L + 
�1 + �1 + ��/L�2 − 4/L� , �24�
2
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�D�
2 = 1

2��
2�1 + �1 + ��/L − 
�1 + �1 + ��/L�2 − 4/L� , �25�

with L���� /�D�2=k /�mcpD12, appearing in h�D and hD� due
to the diffusion of heat and of mass for either the boundary-
layer limit or a cylindrical duct; the functional forms of h�D

and hD� are the same as those of h
, either exponential or
Bessel depending on the geometry. In the boundary-layer
limit, the �’s must be positive in order to satisfy the bound-
ary condition that the solution remains finite as y→�. For a
cylindrical duct, the condition that the solution is finite at the
center eliminates the Y0 Bessel-function solutions. In that
case, we can conveniently choose the �’s to be positive be-
cause J0 is an even function of r.

Substitution of Eq. �23� in Eq. �18� and matching of h


terms gives

B = −
�mcp

p1

�u1	
ı�

1

1 − f


�

�1 − ���1 − �L� − ��

����L − 1�
dTm

dx
+

�Tm

kT�

dcm

dx
� �26�

for arbitrary duct geometry, and with the Prandtl number �
= ��
 /���2=�cp /k. For comparison with Eq. �33� of Ref. 2,
this can be recast as

B =
ıe−ı�

1 − f


�

�1 − ���1 − �L� − ��
���L − 1��T + ��c� , �27�

where � is the phase by which p1 leads �u1	 and �c is the
same as in Ref. 2,

�c =
dcm/dx

�dcm/dx�sat
=

dnH/dx

�dnH/dx�sat
, �28�

where


dcm

dx
�

sat
=

� − 1

�
kT�

�p1�
pm

�

��u1	�
, �29�


dnH

dx
�

sat
=

� − 1

�
kT

�p1�
pm

�

��u1	�
, �30�

and �T is given by Eqs. �2� and �3�. For a parcel of gas
executing standing-wave motion in a critical gradient of the
correct sign with respect to the relative phasing of p1 and u1,
the temperature of the gas would be approximately constant
in time, ignoring the effect of viscosity on the velocity pro-
file.

Finally, the coefficient C is obtained by substitution into
the zero-flux boundary condition. For any duct geometry,

C = �B� f


�1 − ��
�

− fD�
 ��
2

�D�
2 − 1��

+ fD�
 ��
2

�D�
2 − 1� +

ıe−ı�

1 − f


�T� f
 + fD�
 ��
2

�D�
2 − 1���

/� fD�
 ��
2

�D�
2 − 1� − f�D
 ��

2

��D
2 − 1�� . �31�

This result can be made more compact for the boundary-

layer limit as

D. A. Geller and G. W. Swift: Thermoacoustic mixture separation



C = CS&S�1 − B�1 + 
� − 1

�

� ��


L��D − �D�
�

+
ıe−ı�

1 − f


�T
1 + 
�
��


L��D − �D�
�� . �32�

When dTm /dx=0, this reverts directly to C as written in Eq.
�35� of Ref. 2. When the concentration gradient is also set to
zero, this expression clearly also reverts to the version of C
found in the earlier article, Ref. 1.

Substituting T1 into Eq. �15�, we now obtain the oscil-
lating concentration

c1 = −
p1

�mcp

kT�

�Tm
�
1 −

1

�
�Bh
 + 
1 −

��
2

��D
2 �Ch�D

+ 
1 −
�mcp

p1

�u1	
ı��1 − f
�

dTm

dx
− B − C�
1 −

��
2

�D�
2 �hD�

+
�mcp

p1

�u1	
ı��1 − f
�

dTm

dx
h


+
�mcp

p1

�u1	
ı��1 − f
�

�Tm

kT�

dcm

dx
�1 − h
�� , �33�

including the effect of a temperature gradient along the duct.
This expression is correct for either the boundary-layer limit
or the finite cylindrical tube, because Eq. �15� contains only
even derivatives of T1.

IV. THE SEPARATION FLUX TO SECOND ORDER

From Eq. �8� expressed in heavy mole fraction nH in-
stead of concentration c, the zeroth-order diffusive mole flux
of the heavy component is

ṄH,m = − NAD12
dnH

dx
+

kT

Tm

dTm

dx
� , �34�

where A is the cross section of the duct and N is the molar
density of the mixture. In the absence of bulk steady flow,
the total mole flux of the heavy component through second
order, including the effect of the axial temperature gradient,
is then

ṄH = ṄH,m + ṄH,2 = − NAD12
dnH

dx
+

kT

Tm

dTm

dx
�

+
��

4rh

� − 1

�

kT

RunivTm
�p1��U1��Ftrav cos �

+ Fstand sin � + F�c�c + F�T�T� , �35�

where Runiv is the universal gas constant, U1 is the oscillating
volumetric velocity, Ftrav and Fstand were first introduced in
Ref. 1, and F�c is just Fgrad from Ref. 2. Using the results of
Sec. III, we can calculate the time-averaged second-order
mole flux of the heavy component from

ṄH,2 =
mavg

mHmL

A�m

2
R��c1ũ1	� , �36�

where tilde denotes the complex conjugate, mH and mL are

the heavy and light molar masses, respectively, and mavg
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=nHmH+ �1−nH�mL is the average molar mass. Because u1

depends only on the momentum equation, all new
dTm /dx-dependent terms enter the mole flux linearly through
c1. Writing out all the terms explicitly,

A�m

2
R��c1ũ1	�

=
1

2

kT�/�
cpTm

R� p1Ũ1

1 − f̃


�− 
� − 1

�
�B�h
�1 − h̃
�	

− 
1 −
��

2

��D
2 �C�h�D�1 − h̃
�	 − 
1 −

��
2

�D�
2 �

�
1 −
�mcp

p1

�u1	
ı��1 − f
�

dTm

dx
− B − C��hD��1 − h̃
�	

−
�mcp

p1

�u1	
ı��1 − f
�

dTm

dx
�h
�1 − h̃
�	

−
�mcp

p1

�u1	
ı��1 − f
�

�Tm

kT�

dcm

dx
��1 − h
�2	�� . �37�

The last term in brackets, times p1Ũ1 / �1− f̃
�, is purely
imaginary so that it evaluates to zero in the R�� and can be
ignored. If dTm /dx→0, then this expression reduces to Eq.
�48� of Ref. 2. Since those contributions to the mole flux are
already known, we can simplify the algebra by subtracting
them from Eq. �37� in order to derive the contribution to the
mole flux due to the temperature gradient alone. However,
when dTm /dx�0, the definitions of B and C given here by
Eqs. �27� and �31� contain dTm /dx-dependent terms, so that
one must take care in subtracting Eq. �48� of Ref. 2 from Eq.
�37� above.

The flux can be evaluated making use of the identity

�hi�1 − h̃j�	 =
�i

2

�i
2 + � j

2 �f i − f̃ j� , �38�

which holds true for any channel geometry.9 If one considers
only terms containing dTm /dx, then one obtains from the
portion in brackets above, after considerable work,

F�T =
R

��

1

�1 − f
�2
�

�1 − ���1 − �L� − ��

� I� f


S

�D�

2 − ��
2

�D�
2 + �


2 fD� −
��D

2 − ��
2

��D
2 + �


2 f�D

+
�1 + ��LQ

M
f̃
 + S� +

1 − �L − ��

�
G� , �39�

where R is the radius of the circular duct, and

S = 
 ��
2

�D�
2 − 1� fD� − 
 ��

2

��D
2 − 1� f�D, �40�

Q =
��D

2 − �D�
2

�2 , �41�

�
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M = �1 + ���1 + �L� + �� , �42�

G =
�LQ

SM
f�DfD� +
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1 + �

2/�D�

2 −
fD�

1 + �

2/��D

2 � . �43�
circular tube.
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For parallel-plate geometry, use the hyperbolic-tangent
expressions6 instead of the Bessel expressions for f i.

In the boundary-layer limit, f i= �1− ı��i /2rh, so the re-
sult for F�T reduces to just
− F�T =

�L�1 + 
L��1 + �2
L� + �3/2L + 
�� − 1


�
+ �
L�1 − �L − ��� − �L�1 + ���

��D+�D�

��

�1 + 
L���1 + ���1 + �L� + �����1 − ���1 − �L� − ���/�
. �44�
The various F parameters are plotted in Fig. 2�a� as a
function of Ar mole fraction in a He–Ar mixture in the
boundary-layer limit. Evidently F�T is a fairly small con-
tributor to the time-averaged mole flux for ��T�	1. Figure
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FIG. 2. �a� Comparison of F�T to previously defined F’s, for He–Ar in the
boundary-layer limit. �b� The calculated mole-fraction gradient at which

thermoacoustic mixture separation saturates �i.e., ṄH=0� versus oscillating
pressure amplitude for various values of the temperature gradient along a
duct similar to those used in the experiments. These curves are calculated
for 80 kPa 50–50 He–Ar mixtures in a 3.3 mm diameter tube at a frequency
of 200 Hz. The calculation assumes traveling-wave phasing and a mean
temperature of 300 K, and it uses the functional forms for a finite-diameter
2�b� shows the expected effect of this small contribution in
our experiment’s finite-diameter circular tube, for values of
temperature gradient corresponding to −0.8	�T	0.8,
which is the range covered by our experiments.

V. EXPERIMENTAL APPARATUS

The apparatus used to study the behavior of thermoa-
coustic mixture separation with an axial temperature gradient
is a modified version of the apparatus used in the experi-
ments on separation of neon isotopes3 and on separation with
continuous flow4 of feedstock and products. Its geometry is
shown in Fig. 3. In the current arrangement, the separation
duct is a single 0.965 m length of stainless-steel tubing and
fittings, with an inner diameter of 3.33 mm. The tubing was
cut at three locations and joined back together by soldering
into custom copper unions. These unions include side taps
for attachment of microcapillaries carrying a small flux of
the sample gas to a residual gas analyzer10 �RGA� for con-
centration analysis. The unions also have side taps for con-
nection to pressure transducers, which were used to verify
the acoustic field in the duct. Small holes were drilled in the
copper unions and thermocouple transducers were inserted to
measure the local temperatures along the duct.

At the middle of the duct—its hottest point—it was nec-
essary to thermally isolate the pressure transducer from the
duct for two reasons. First, operating a transducer at elevated
temperatures would have required calibration to evaluate its
internal temperature compensation. Second, the temperature
in the middle of the duct would often exceed the maximum
operating temperature of the available transducer.11 There-
fore, this transducer was instead screwed into a small brass
chamber with low dead volume, which was connected to the
duct through 6 cm of stainless-steel capillary of 0.5 mm in-
ner diameter. The brass chamber was water-cooled to main-
tain a temperature of about 300 K on the transducer. Calcu-
lations showed that this capillary and chamber did not
significantly attenuate p1 at the transducer.

The high operating temperatures in the middle of the
duct also required that the microcapillaries to the RGA used
to measure the He and Ar mole fractions be designed to
withstand temperatures up to 575 K. The 5 cm lengths of

glass microcapillary, with internal diameter 10 �m, were ep-
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oxied into stainless-steel capillaries using a high-temperature
epoxy.12 These assemblies are attached to the copper unions
using Swagelok connectors.

The duct, including the three copper unions, is enclosed
in a clamshell formed from two 0.94 m long bars of 1 cm �
1 cm square copper. This clamshell serves as a thermal con-
ductor to enforce a nearly linear temperature gradient along
the duct. A ball-end mill was used to cut a groove lengthwise
along one side of each bar to accommodate the circular duct.
This clamshell was clamped onto the duct with water-cooled
heat sinks at each end. The heat sinks cool the ends of the
tube approximately to room temperature where they enter the
acoustic drivers. Another copper clamp holds the clamshell
together at the midpoint of the duct, and a heater tape is

FIG. 3. The mixture-separation apparatus consists of a 3.3 mm diameter,
0.965 m long stainless steel tube, with hermetically sealed acoustic drivers
at both ends. The connections to these drivers have ports for measuring the
oscillating pressure and for withdrawing the mixture to a RGA, such that the
length of the duct across which measurements are made is 0.975 m, slightly
longer than the steel tube. The steel tube is sandwiched between two copper
bars through which a circular groove was machined. This copper clamshell
establishes the nearly linear thermal gradient along the duct, and it is held in
place by the copper heatsinks at either end and by a copper clamp in the
middle around which the heater is wound. The entire length of the copper
clamshell is surrounded by fiberglass insulation �not shown� in order to
minimize heat leaks to the surrounding room.
wound around this clamp. Heat is thus applied at the mid-
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point of the duct, so that the copper clamshell generates
equal temperature gradients from the center to both ends of
the tube, so we can study gradients both along and opposing
the traveling wave at the same time in a single experiment.

Each end of the duct is connected to an acoustic driver
composed of a hermetically sealed bellows attached to the
dome of an electromagnetic speaker. The volume in each
bellows is much larger than that of the separation tube itself.
The duct is oriented vertically, and the gas mixture sample is
introduced through a plug valve near the lower acoustic
driver. Pressure transducers screwed directly into the duct
near the drivers are used to set the drive voltages of the two
speakers in order to achieve the desired pressure amplitudes
and relative phases at the ends of the duct. The duct-end
conditions on the oscillating pressure are chosen to give a
traveling wave with a desired amplitude at the midpoint of
the duct. These duct-end pressures are calculated numerically
for a desired wave using DeltaEC.13

VI. RESULTS

Separation experiments were performed, starting from a
spectroscopically verified 50–50 He–Ar mixture, for nine
values of the temperature gradient—0, �116, �216, �316,
and �416 K/m—corresponding to five mid-duct tempera-
tures. For each value of the gradient, experiments were per-
formed with traveling waves in the duct with nominal values
for the oscillating pressure �p1� of about 1.0, 1.5, and 3.0 kPa
at the midpoint of the duct. Before each experimental run,
the temperature profile was established, the residual gas in
the apparatus was pumped away to a pressure below 50 �m
Hg, and the duct was filled with a fresh gas mixture to a
pressure of 80 kPa, which is slightly above the typical atmo-
spheric pressure in Los Alamos. When the duct’s fill valve
was left open too long, thermal diffusion between the duct
and the fill manifold was observed to alter the mean concen-
trations in the duct over several minutes. This would result in
the average concentration of the charge of gas in the duct not
being 50–50 after the valve was closed. To minimize this
effect, we first filled the filling manifold alone to a pressure
calculated such that when the valve to the duct was momen-
tarily opened, the duct would reach the desired equilibrium
pressure given the applied thermal gradient. Then the final
fill valve was opened just until the panel pressure stopped
changing, which took less than 5 s.

After introducing the mixture, the acoustic wave was
applied and the sample was allowed to separate for 1–3 h,
depending on how long the concentrations were observed to
change at the ends of the duct, which in turn depended on the
amplitude of the wave and the temperature gradients along
the duct. The mole fractions of He and Ar were then mea-
sured with the RGA for each of the five microcapillaries
along the duct. The partial pressure of nitrogen was also
recorded as a diagnostic for detecting leaks of air into the
duct.

As noted in Ref. 4, the RGA is much more sensitive to
argon than to helium, and the RGA-pumping system re-
sponds nonlinearly to the flow rate of the sample gas. In our

experiments, the relative sensitivity of the RGA system to
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helium versus argon is a function both of the flow rate of the
gas through a microcapillary and of the true ratio of the
concentrations of the gas mixture being sampled. For the
present work, all five microcapillaries have very similar flow
impedances so a single calibration might be expected to
work for them all. However, the wide range of temperatures
required by the experiment cause different flow rates through
different microcapillaries, and therefore different relative
sensitivities, in a single experiment. To account for this via
calibration, the ratio of component partial pressures pp�Ar�/
pp�He� reported by the RGA as gas flowed through a single,
typical microcapillary was recorded with no sound wave and
no temperature gradients, for different mixtures of He–Ar
from 70–30 to 30–70 at 80 kPa and for mean pressures from
0 to 87 kPa in the 50–50 mixture. The relative sensitivity
depended weakly, if at all, on argon concentration at fixed
pressure, observed differences being less than the 0.01–0.02
accuracy of the measurement for the range of concentrations
�0.38�nL�0.62� used in our separation experiments. How-
ever, the relative sensitivity varied by as much as 0.07 over
the range of RGA partial pressures seen in our separation
experiments. The relative sensitivity was nonlinear in the
argon partial pressure, and at any given pressure it varied
from day to day. To account for these problems, we used a fit
to the calibration data to scale the relative sensitivity for each
microcapillary based on the argon partial pressure measured
there, and we forced a weighted average of the mole frac-
tions �weighted by the volume distribution in the entire ap-
paratus� to be exactly 0.5. This procedure reduced the uncer-
tainty in the mole-fraction results to about 0.01, as confirmed
in Fig. 4 for thermal diffusion without a sound wave. The
thermal-diffusion ratio for He–Ar mixtures is well known,14

so the calculated curves in Fig. 4 are a standard against
which the data can be confidently compared.

When the ends of the tube are closed and the separation

is allowed to run until it saturates, then ṄH=0 and the con-
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FIG. 4. Thermal diffusion for several applied gradients without acoustic
excitation. Symbols are measurements and lines are calculations. At the ends
of the duct, the temperature was held at 290 K by a recirculating chiller.
centration gradient calculated from Eq. �35� is
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The change in the concentration gradient at saturation due to
dTm /dx�0 therefore depends on the amplitude of the sound
wave in the duct:
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The temperature gradient has the largest absolute effect when
��u1	�=0, because there is no thermoacoustic separation in
that case but ordinary thermal diffusion still produces a con-
centration gradient. In that case, the dimensionless ratio in
Eq. �46� is 1. As ��u1	�→�, the acoustics dominates and the
dimensionless ratio approaches F�T /F�c, which for a 50–50
He–Ar mixture is approximately 1/3, as shown in Fig. 2. For
a 1.5-kPa traveling wave in our duct, the dimensionless ratio
in Eq. �46� is about midway between these two extremes, so
the thermoacoustic consequence of nonzero dTm /dx is com-
parable with that of ordinary thermal diffusion. Figure 5
shows experimental data and calculations for this case.

For extensive comparison with the theory, separations
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FIG. 5. Concentration versus position for a traveling wave propagating in
the −x direction with pressure amplitude �p1�=1.5 kPa at the midpoint and a
temperature gradient of �416 K/m on either side of the midpoint. The solid
triangles are measurements of helium mole fraction nL at the five microcap-
illaries along the duct. The solid curve is a calculation �Ref. 13� using Eq.
�45� and the dotted curve is a corresponding calculation using the theory of
Ref. 2, which omits the dTm /dx term in Eq. �45�. The curves were calculated
using as boundary conditions the values of acoustic pressure p1 at each end
of the duct and the requirement that the total helium concentration integrated
over the apparatus was 0.5, because the fill valve was closed at the begin-
ning of each experiment. Comparing the data and models in this way high-
lights the small differences in slope arising from the term with F�T.
were performed over a range of temperature gradients span-
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ning 0–416 K/m and over a range of oscillating pressure
amplitudes �p1� from 0 to 3 kPa. The results are summarized
in Fig. 6. This plot shows the gradients in concentration nL

versus gradients in temperature calculated between the
middle of the duct, which was usually heated, and the end
points of the duct, which were held at room temperature. In
this way, each experiment at a different midpoint tempera-
ture or amplitude �p1� contributes two points to the graph.
These points can be compared against the curves calculated
using Eqs. �34�–�43� as implemented in DeltaEC,13 for the
experimentally measured temperatures and the pressure am-
plitudes recorded for each run. In general, the data roughly
match the calculated curves.

An uncertainty of 0.01 in the measurements of nL can
result in an error of as much as 0.02 / �0.5 m�=0.04 m−1 in
�nL /�x. However, the highest-amplitude data show devia-
tion from calculated values a little higher than this for
�T /�x
0, possibly due to turbulence. The Reynolds num-
ber of the oscillating flow is as high as 1600 at the high-
amplitude end of the separation tube �the �T /�x
0 end�
based on �U1� and tube diameter. This is near the expected
transition to turbulence for oscillating flow15 in a tube with a
diameter of the order of 10�
. The fact that the 3 kPa,
�T /�x
0 data here deviate from calculations more than do
the 3 kPa, �T /�x=0 data here and the 3 kPa, �T /�x=0 data
of Ref. 4 suggests that nonzero axial temperature gradients
may affect the transition to turbulence.

Finally, evaluating Eq. �2� for the conditions of this ex-
periment gives �dTm /dx�crit�500 K /m, only slightly above
the experiment’s highest gradients, 416 K/m. Thus, at tem-
perature gradients near critical, we might have expected the
acoustic separation to differ very little from the zero-
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FIG. 6. A representation of all data and corresponding calculations, over the
ranges 0� �p1��3.0 kPa and 0� �dTm /dx��416 K /m. The filled symbols
are data for the finite-difference gradient in helium concentration versus the
finite-difference gradient in temperature. The differences are from the ends
of the duct to the middle, ignoring the measurements at the intermediate
microcapillaries numbered 2 and 4. The curves are corresponding calcula-
tions, matched to the actual pressure amplitude of each measured point.
acoustics separation for which axial thermal diffusion alone
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is responsible. The resolution of this paradox becomes appar-

ent by setting ṄH=0 and dnH /dx= �kT /Tm�dTm /dx in Eq.
�35� and solving for dTm /dx, obtaining

dTm

dx
=

� − 1

�
Tm

�p1�
pm

�

��u1	�
Ftrav cos � + Fstand sin �

F�c − F�T
, �47�

the actual temperature gradient for which the presence of the
sound wave does not change dnH /dx. Equation �47� differs
from Eq. �2� by a factor depending on the four F’s. For a
standing wave in 50–50 He–Ar in the boundary-layer limit,
Eq. �47� is nearly equal to Eq. �2�, because Fstand�F�c

−F�T. But for a traveling wave in 50–50 He–Ar in the
boundary-layer limit, Eq. �47� is 1500 K/m, about three
times the value given by Eq. �2�. This is the gradient at
which all four sets of data in Fig. 6 would approach one
another.

We retain Eq. �2� as the formal definition of �dTm /dx�crit

because it is simple, independent of tube size, and indepen-
dent of the transport properties of the gas.
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